
Numerical Experiment With Time and Spatial Accuracy of Navier-Stokes

Computation for Helicopter Problems.

Jasim U. Ahmad

MCAT Inc.

Mail Stop 258-1, NASA Ames Re,arch Center, Mnffett Field, CA 94035-1000

Introduction

Helicopter flowlields are highly unsteady, nonlinear and three-dimension_fl. Ill forward flight mid in

hover, tile rotor blades interact with the tip vortex and wake sheet developed by either itself or the other

blades. Tiffs interaction, known as blade-vortex interactions(BVI), results in unsteady loading of the blades

and can cause a distinctive acoustic signature.

Accurate and cost-effective compt_tational fluid dynamic solutions that capture blade-vortex interac-

lions can help rotor designers and engineers to predict rotor performance and to develop designs for low

acoustic signature. Such a predictive method must preserve a blade's shed vortex for several blade revolu-

tions before being dissipated. A number of researchers have explored the requirements for this task.

This paper will outline some new capabilities that have been added to the NASA Ames' OVERFLOW

code to improve its overall accuracy for both vortex capturing and unsteady flows. To higtllight these

improvements, a number of case studies will be presented. These case studies consist of free convection of a

2-dimensional vortex, dynamically pitching 2-D airfoil including light-stall, and a full 3-D unsteady viscous

solution of a helicopter rotor in forward flight

In this study both central and upwind difference schemes are modilied to be more accurate. Central dif-

terence scheme is chosen for this simulation because the flowfield is not dominated by strong shocks. The

feature of shock-vortex interaction in such a flow is less important than the dominant blade-vortex interac-

tion. The scheme is second-order accurate in time and solves the thin-layer Navier-Stokes equations in fully-

implicit ma_er at each time-step. The spatial accuracy is either second and fourth-order central difference

or third-order upwind difference using Roe-flux and MUSCLE scheme. This paper will highlight and dem-

onstrates the methods for several sample cases and for a helicopter rotor. Preliminary computations on a

rotor were performed by using this method[l I and is in the process of documentation.

Model Problems

The scheme is tested by calculating several model problems involving vortex convection, moving, ,'rod

oscillating grids. The method also provides the various aspect of the moving grid computations. Two cases

presented for this study are closely related to typical helicopter flowfields. Recommendations will be pre-

sented for practical implementation and use of the various ntmaerical schemes.

The first test case is a passive convection of vortex in a free stream and monitoring a measure of the rate

of decay of the vortex. A perfect method should convect the vortex in space with no dissipation or disper-

sion. This case tests the time-accurate free convection of a vortex flow. Consider a compressible Euler equa-

tions of gas dynamics problem for a 2D rectangular domain. The mean flow is p - l, p- l, and

(u, v)- (o,o) (steady flow)or (u, v)= (1,0) (horizontal flow), or (u, v)= (l, 1) (diagonal flow). We add, to

the mean flow, an isentropic vortex i.e., perturbation in (u, v) mid the temperature T = p/p, no perturbation

in entropy. The computational domain is taken as 10, l0 ] X [0, l0 l, extended periodically in tx)th directions.

The convection speed is Mach 0.5. The exact solution of the Euler equation with ttrese initial and boundary

conditions is simply the passive convection of the vortex with the mean velocity. Periodic boundary condi-

tion allows us to compute the long time evolution of the vortex. No shocks are considered.

The initial vortex is positioned at the center of tile domain. The grid resolution is 81 x 81 and the

timestep DT is normalized by the freestream speed of sound and the mfft of length of the domain. If DT =
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0.1,it takesanelapsedtimeof20forthevortextoconveclthroughoneperiodand(ideally)returnbackto
thecenteroftilegrid.

Variousmethodsweretestedwiththisproblem.Plotsareshownforthedensityvariable.Theinitialvor-
texcenteris representedwithgridlines.Tiffsfacilitatesshowingtilephaseshiftof tile vortex after time evo-

lution. Fig. 1 shows the contour plots for the first period of the vortex traverse. Initial start-up vorlex is shown

in Fig 1.(a). Fig. l(b-c) is lbr first-order time accurate computation with and without subiteration respec-

tively. Fig. 1(d) is wilt1 tile second order in thne and with three sllbiterations, and for the first period, this

closely resemble tile initial vortex. For a bigger thne-step, and nosubiteralion (Fig le) the vortex is ahnost

out of phase at the very first period. The rest of the line plots of Fig. 2 thorough 12 show the density at a Ctll

section of z = 5 thiough the domain for tile vltrious methods and options used.

In the second problem, a case study of unsteady 2D flows over ml oscillating NACA0015 airfoil have

been performed for an attached flow. Tile results were compared with experimenral data as well as with the

existing various numerical computations[2]. The experiment chosen for all the previous computations were

done at NASA Ames Research Center. The experiment gave detail measurements of static and dynamic

pressure distributions and cycle averaged lift, drag, and pitching moment coefficients.

Fig. 13 shows hysteresis of lift, drag, and pitching moment coeflicients for attached flow. Tile only tur-

bulence model used in this study is Baldwin-Lomax model. Computations were done on a C-type grid of

total of 259 x 60 points, of which 100 points are on the upper surface, 80 points on the lower surface of the

airfoil, 40 points ,'t/ong the wake cut. The tartield boundary extended to 15 chord length away from the air-

foil surface. In the present study, only 1440 steps were taken for each pitching cycle, yet comparable accu-

racy were obtained with the central difference scheme of both second and fourth-order. ThiN-order upwind

MUSCLE scheme shows considerable discrepancies in the drag and pitching moment prediction.

Results of third-order scheme of Fig. 13 were obtained without any limiter to the MUSCLE scheme. Fig.

14 compares third-order MUSCLE scheme results with and without limiters. All of these calculations agree

well with the computations by other investigators. From these calculations, it is evident that no limiter

should be used for flow without shocks and for cases with shocks, choice of proper lirniter is very important.

Helicopter Rotor Problem

This study will demonstrate a method of computing flowfield of arbitrary rotors in fi)rward flight, The

equations are solved on a system of overset grids that allow for prescribed cyclic and flapping blade motio_ks.

Computed results will be compared either with flight test data or wind-tu_mel experiment with a scaled rotor.

A full 3-D simulation with rotors showing promising results were shown in Ref. 1. Details of this will be

presented in the full paper.
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a.InitialVortex b.Firstorderaccuratein time,nosubiteration
dt= .01

1
c.First order accurate in time, 3 subiterations d. Second order accurate in time, 3 subiterations

dt = .01 dt = .01

e. No subiterations, dt- .05

( /
f. 3 subiterations, dt - .05

Figure 1. Passive Convection of Vortex in a Periodic Domain. Solution after 1 period. Grid lines in the middle indicates the original center

of the vortex. Note the phase shift in case e.
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Figure 2. Effect of subitemtions on time-accurate computation.
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Figure 3. Computations with bigger time steps.
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Figure 4. Effectof numberof subiterations.Firstordertimeaccurate.
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Figure 5. Ist order time accurate. Central difference 401 and 2nd order spati_d accuracy with fourth order dissipation and third order MUS-

CLE scheme with ROE upwinding is with limiter turned on.
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Figure 6. 2nd order time accurate. Central difference 4th and 2nd order spatial accuracy with fourth order dissipation and third order

MUSCLE scheme with ROE upwinding is with limiter turned on.
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Figure 7.1st order time accurate. Central difference 4th and 2nd order spatial accuracy with fourth order dissipation and third order MUS-

CLE scheme with ROE upwinding is with limiter turned off.
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Figure 8. 2nd order time accurate. Central difference 4th and 2nd order spatial accuracy with fourth order dissipation and third order

MUSCLE scheme with ROE upwinding is with limiter turned off.
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Figure 9. 1st order time accurate. Central difference 4th and 2rid order spatial accuracy with fourth order dissipation and third order MUS-

CLE scheme with ROE upwinding is with limiter turned on.
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Figure 10. 2nd order time accurate. Central difference 4th and 2nd order spatial accuracy with fourth order dissipation and third order

MUSCLE scheme with ROE upwinding is with limiter turned on.
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Figtme 11. Ist order time accurate. Central difference 4th and 2nd order spatial accuracy with fourth order dissipation and third order

MUSCLE scheme with ROE upwinding is with limiter turned off.
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Figure 12.2nd order time accurate. Central difference 4th and 2nd order spatial accuracy with fourth order dissipation and third order

MUSCLE scheme with ROE upwinding is with limiter turned off.
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Fig. 12 Hysteresis of lift, drag, and pitching moment coefficients for attached flow of an oscillating airfoil at

ct - 4* + 4.2* sin(2kM,ot + 1.5*t), M_, - 0.29, Re - 1.95x 106, k - 0.l
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Fig. 13 Hysteresis of lift, drag, and pitching moment coefficients for attached flow of an oscillating airfoil at

a - 4 ° +4.2"sin(2kM,j+ 1.5n), M - 0.29, Re - !.95xl06, k - 0. l, solid lines: MUSCLE scheme with

limiter off, dashed line: MUSCLE scheme with limiter on.
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